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Abstract Planar chirality of objects is a problem with important applications in
many fields of natural sciences, especially in chemistry and pharmacology. The anal-
ysis of chirality properties can be studied using n-polyominoes and planar graphs. In
this paper we show that graph representations of chiral objects can be star-graphs.
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1 Introduction

Chirality, as an expression was introduced by Louis Pasteur who discovered molecular
chirality. The Greek word “kheir” means “hand.” So chirality indeed means “handed-
ness”. Chirality is a property of asymmetry.

In chemistry, chirality is a property of molecules having a non-superimposable
mirror image.

In mathematics, chirality of an object A means that it cannot produce a perfect
overlap with its mirror image A♦.

If a molecule can be made coincident with its mirror image by translations and
rotations in the 3D space than it is called “achiral” in the specified space. Otherwise
the molecule is called “chiral” in the 3D space. There are many stable organic mol-
ecules with existing and stable mirror image. These are called enantiomers. Usually
their chemical and physical properties are the same, but interestingly their biological
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properties can be completely different. A well known tragic event was the Thalidomide
case in the late 1950-es and early 60-es:

“Thalidomide is a sedative drug that was prescribed to pregnant women. It was
present in at least 46 countries under different brand names. When taken during the
first trimester of pregnancy, Thalidomide prevented the proper growth of the foetus,
resulting in horrific birth defects in thousands of children around the world. Why? The
Thalidomide molecule is chiral. There are left and right-handed Thalidomides. The
drug that was marketed was a 50/50 mixture. One of the molecules, say the left one,
was a sedative, whereas the right one was found later to cause foetal abnormalities.”
(see [1])

This event illustrates the main reason, why chirality plays a key role in chemistry
and pharmacology. Considering the chemical chirality, the simplest approach is to
say that a molecule is chiral or achiral. One can think that there is no other case. On
the other hand a few scientists recognized that it is possible to measure the degree
of chirality. Several ”measures” of chirality have been proposed earlier. For example
Frank Harary and Paul Mezey wrote remarkable papers in this field (see [2,4] and
[5]). Here we must mention Harary and Robinson’s pioneer work (see [3]) and impor-
tant contributions of Kitaigorodski, Mislow, Siegel, Gilat, Rassat, Avnir and Meyer
(see [7–14]).

Following the idea introduced by the above mentioned authors, we consider the
2 dimensional case. Here we also refer to an early work of Cahn et al. [15]. The
acceleration of research in nanotechnology has led to the focal point of interest in
the one molecular layers of a surface, thus the importance of characterization of
planar chirality increased. We are going to summarize briefly Mezey’s results
(see [5]) about graph representations of chiral objects.

We show that there always exist special star-graph representations for these objects.

2 Basic concepts and previous results

Definition 2.1 An object A embedded in an n-dimensional Euclidean space En is
chiral if it cannot produce a perfect overlap with its mirror image A♦ within En .
Otherwise A is said to be achiral in the specified space.

Note, that chirality and achirality of objects are always dependent on n. An object
A that is chiral if embedded in a given n-dimensional Euclidean space En is achiral if
embedded in a higher dimensional Euclidean space. This implies that chirality of A
may occur only in the lowest dimension space where the specified object is embeddable
(see [6] and [5]).

Many two-dimensional chirality problems can be studied by so called lattice ani-
mals. We start with some graph theoretical concepts used in this paper.

Let us consider in the plane a square grid of size n ×n, consisting of (n −1)2 small
equal squares. Let G = (V, E) be the graph with node set V formed by the n2 grid
points and the edge set E containing all sides of (n − 1)2 squares (i.e. all grid edges).

Definition 2.2 A Jordan cycle C of the graph G is a cycle that is a connected subgraph
of G having only two-degree nodes.
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Fig. 1 Tetrominoes in R
2

Definition 2.3 A subgraph A of G is called animal if it contains all the nodes and
edges of that fall on a Jordan cycle C of G or within the interior of C .

Definition 2.4 A cell C of an animal A is a 4-cycle contained in A.

Note that the perimeter of an arbitrary animal A is a Jordan curve. Let us denote this
curve by J (A).

Definition 2.5 Animals with n cells are called n-polyominoes or n-ominoes.

For example, the 4-ominoes (tetrominoes) are the “straight”, “T”, “L”, square and
skew tetrominoes (See Fig. 1).

Let us consider an arbitrary animal A. We will denote shortly the Jordan curve
J (A) by J and its mirror image by J♦. Assume that they are positioned so that the
intersection of their interior I nt (J ) and I nt (J♦) has the maximum possible area, i.e.
area [I nt (J ) ∩ I nt (J♦)]=maximum. We denote the union of J and J♦, satisfying
condition of maximum intersection by J ⊕ J♦.

This object J ⊕ J♦ partitions the plane into k + 1 disjoint subsets, namely
S0, S1, . . . Sk, where S0 is the unbounded exterior part of the plane lying on the
outside of both Jordan curves J and J♦. Let us consider S1 = I nt (J ) ∩ I nt (J♦)

and for i = 2, 3, . . . k let Si be the maximum connected subset of the partition
which belongs to the interior of precisely one of J or J♦ having no common points
with any of S0, S1, . . . Si−1. (S1 may be the union of more disjoint components, and
S2, S3, . . . , Sk are connected components.) If J ⊕ J♦ is not unique, one with the
smallest k is chosen. (“minimum k condition”)

In [5] it is shown that the condition of maximum intersection and minimum k
condition for J ⊕ J♦ are essential.

The integer k − 1 denoted by gtk(J ) in [5] is an important attribute of chirality of
Jordan curve J . In the above mentioned paper the author defines the graph represen-
tation g

(
J ⊕ J♦)

of a Jordan curve as follows.

Definition 2.6 Let us consider a graph with node set {1, 2, . . . , k}. By definition
nodes i and j are adjacent if the corresponding subsets Si and S j of the partition are
separated by a line segment (i.e. sequence of grid edges) of J ⊕ J♦ of positive length.

3 Our results

Definition 3.1 In this paper we consider nodes i and j adjacent if the correspond-
ing subsets Si and S j of the partition introduced in Sect. 2 are separated by a simple
line segment of J ⊕ J♦ of positive length (so ”parallel” grid edges from J ∩ J♦ are
excluded). In this case partition sets Si and S j are also called adjacent.

As an example let us consider the chiral Jordan curve J and its mirror image J♦
from Fig. 2.
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Fig. 2 J and its mirror image J♦

Fig. 3 On the right figure J is rotated by 180◦, on the left one S1 is not connected

Fig. 4 Graph representation of
J from Fig. 2

Notice that in this paper we consider graph representation of a Jordan curve J (A)

based on adjacency from Definition 3.1. Assume that J and J♦ from Fig. 2 are posi-
tioned so that the intersection of their interiors I nt (J ) ∩ I nt (J♦) has the maximum
possible area.

J ⊕ J♦ in this case is not unique because both objects from Fig. 3 satisfy condition
of maximum intersection and the minimum k condition.

The graph representation of J (defined using adjacency from Definition 3.1 )
denoted by g

(
J ⊕ J♦)

following the notations of [5] in both cases is a “cherry graph”
as shown in Fig. 4.
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Nodes 2 and 3 are not adjacent for the second object of Fig. 3, because S2 and S3
are separated by a “parallel” line segment (grid edges from J ∩ J♦ are denoted by
bold lines).

Consider an arbitrary animal A in the plane, J := J (A) the Jordan curve deter-
mined by the perimeter of A and its mirror image J♦. For simplicity, let us call the
grid edges of Jordan curve J red ones and the edges from J♦ blue ones. The other
edges of the square grid are considered uncolored.

Lemma 3.1 Neither red nor blue grid edges exist in I nt (Si ) for all i = 1, 2, . . . , k.

Proof If i = 1, S1 = I nt (J ) ∩ I nt (J♦). Observe that I nt (J ) doesn’t contain red
edges and I nt (J♦) doesn’t contain blue grid edges because J and J♦ are Jordan
curves. Thus S1 can contain only uncolored grid edges.

Let us suppose indirectly that there exist i ∈ {2, . . . , k} such that I nt (Si ) contains
a colored edges “e”. If “e” is red then Si ⊆ I nt (J♦).

J is a Jordan curve that crosses Si , thus F := I nt (J ) ∩ I nt (Si ) �= ∅. We have
∅ �= F ⊆ I nt (J ) ∩ I nt (J♦), that is a contradiction with the condition of maximum
intersection. If “e” is a blue edge (i.e. belongs to the Jordan curve J♦ ) we get similarly
a contradiction with the condition of maximum intersection. 
�
Corollary 3.1 Any line segment separating two adjacent partition sets contains only
edges of the same color. (All of them are red or all of them are blue ones.)

Proof J ⊕ J♦ partitions the plane into sets S0, S1, S2, . . . , Sk thus the simple line
segment that separates two arbitrary adjacent partition sets Si and S j cannot contain
uncolored grid edges. If we suppose indirectly that this line segment contains both red
and blue grid edges (i.e. edges from both Jordan curves J and J♦) let us consider two
different colored grid edges with a common endpoint. J and J♦ are Jordan curves,
thus at least one of them crosses Si or S j , contradiction with Lemma 3.1. 
�
Corollary 3.2 Any two adjacent partition sets Si and S j different from S1 belong two
the interior of different Jordan curves (one of them belongs to I nt (J ) \ I nt (J♦) and
the other to I nt (J♦) \ I nt (J )).

Proof Suppose indirectly that there exist adjacent partition sets Si and S j different
from S1 that belong to I nt (J ) \ I nt (J♦). (If they belong to I nt (J♦) \ I nt (J ) the
proof is similar.) Si and S j are separated by a blue line segment (because J is a Jordan
curve). Then J♦ crosses J such that either Si or S j belongs to I nt (J )∩ I nt (J♦), that
is a contradiction with the condition of maximum intersection. 
�
Theorem 3.1 If Si and S j (i, j ∈ {1, 2, . . . , k}) are adjacent, then one of them is
S1.

Proof This theorem says that two partition sets Si and S j (i �= j) different from S1
cannot be adjacent.
Suppose indirectly that there exist i �= j (i, j ∈ {2, 3, . . . , k}) such that Si and
S j are adjacent. Assume that Si ∈ I nt (J ) \ I nt (J♦). Corollary 3.2 implies that
S j ∈ I nt (J♦) \ I nt (J ).
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Corollary 3.1 guarantees that the line segment that separates Si and S j is mono-
chromatic. Suppose it is blue. Let us consider an endpoint E of this blue separating
line segment. J and J♦ are Jordan curves thus all grid edges incident to E are colored
(red or blue). Any coloration of them lead us to a contradiction with Si ∈ I nt (J ) or
with the condition of maximum intersection. 
�
Theorem 3.2 For each i ∈ {2, . . . , k} Si and S1 are adjacent partition sets.

Proof Suppose indirectly that there exists an i ∈ {2, . . . , k} such that S1 and Si are not
adjacent sets. Theorem 3.1 implies that there is no adjacent partition set for Si . J and
J♦ are Jordan curves, thus Lemma 3.1 implies that parallel line segments separates
Si from the other partition sets situated in its neighborhood, that is a superposition of
J with its mirror image J♦, contradiction with the fact that J is chiral.

We can summarize our results for g
(
J ⊕ J♦)

in the following theorem:

Theorem 3.3 The graph representation g
(
J ⊕ J♦)

of a chiral Jordan curve J is a
star graph, i.e. it contains a node that is adjacent to all other nodes and there are no
other adjacent nodes in the graph.

4 Summary

Star graph representations presented in this paper provide graph theoretical tools for
the quantification problem of chirality of objects in R

2. In this contribution we show
that introducing a more rigorous definition for adjacency (Definition 3.1) in the graphs
relative to P.G. Mezey’s definition [5] we obtain star graph representations of planar
chiral objects.
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